

Integrating global soil-quality impacts into Life Cycle Assessment (ACV-SOL project)

Soil quality: "Capacity of soil to function" (Karlen et al., 1997)

Numerous interrelated soil properties No consensus on a

Complex link with agricultural management practices

No consensus on a Minimum Data Set (MDS) for soil-quality assessment

Few impacts on soil quality commonly considered in environmental analysis methods, especially in Life Cycle Assessment (LCA).

Several approaches developed to evaluate the impacts of agricultural activities on soil quality.

In LCA: SALCA-SQ (Oberholzer et al., 2006); SOM (Mila i Canals et al, 2007)

The challenge:

- estimating complex soil-quality impacts that also depend on fluctuating soil characteristics,
- > doing so for both on-farm and off-farm agricultural soils,
- > and aggregating these impacts spatially and temporally.
- Develop a decision-aid tool for choosing soil-quality impacts for a given context that are compatible with LCA, which will determine which site properties (a "minimum data set") to consider when constructing life-cycle inventories
- Define algorithms that estimate soil-related impacts in the inventory based on these properties (agricultural practices under a variety of soil and climate conditions)
- Classify and characterize inventory elements into several midpoint indicators of impact (and possibly one endpoint indicator)

Aspects of soil quality

Major soil impacts worldwide:

- EROSION
- LOSS OF SOM
- COMPACTION
- Salinization
- Heavy-metal inputs
- Soil Sealing

Most soil-quality impacts of agricultural production are estimated at the field or farm level. Integrating soil-quality impacts throughout the life-cycle of an agricultural product requires a global approach.

Goal: global indicator(s) of soil-quality impacts

Global scale

Taking into account spatial and temporal variability in a life-cycle perspective

Inclusion of soil-quality impacts caused by certain environmental interventions of upstream processes, regardless of geographic location

Unresolved issue in Life Cycle Assessment

Life Cycle Assessment

Site-specific soil and climate characteristics will influence impacts of agricultural practices (environmental interventions).

Units of inventory items

LCI in relation to the FU = *kg of maize produced*

LCI in relation to the FU = hectare

<u>Erosion</u>

kg of soil / yr / kg maize kg of soil / yr / ha

Compaction

to be defined

- Number of passes
- Machine type
- Soil humidity
- Susceptibility to comp.

SOM Change

<mark>kg C / yr / kg maize</mark> kg C / yr / ha

Salinization

to be defined

Impact estimates via simulation

EROSION:

Revised Universal Soil Loss Equation, version 2 (RUSLE2)

 $A = R \times K \times LS \times C \times P$

A: annual loss R: rainfall run-off erosivity factor K: soil erodibility LS: topographic factor C: cover-management factor P: supporting-practices factor

SOM CHANGE:

RothC, version 26.3

RPM: resistant plant material DPM: decomposable plant material BIO: microbial biomass HUM: humified organic matter IOM: inert organic matter

Minimum Data Set

EROSION (RUSLE2)	Soil	 Soil Texture % clay % loam - % sand Slope length and steepness % rock cover (hyp=0) Organic Matter Content
SOM (RothC)	Clima	 ⇒ Soil depth ⇒ Density ♦ Mean monthly temperatures ♦ Monthly precipitation
COMPACTION	te Practices	 Monthly evapotranspiration Crops / soil cover Type of operation / machines Yield (dry matter) Quantity of residues
		Amount of manure applied

Data availability

Some soil properties

			WSD Soil Mapping Unit Deta Coverage ESDB Soil Mapping Unit 9512 Dominant Soil Group CM - C	ils Cambisols
Ant the second	ALL E	7 .	TOPSOIL (0-30 cm)	
. Arter	- mar		Topsoil Sand Fraction (%)	42
< C	Fr LY.	1 × 1	Topsoil Silt Fraction (%)	38
	1007) [Topsoil Clay Fraction (%)	20
· · · · ·		1.00	Topsoil USDA Texture Classification	loam
. 10 5	0		Topsoil Reference Bulk Density (kg/dm3)	1,41
		T	Topsoil Gravel Content (%)	10
	- In t	₽	Topsoil Organic Carbon (% weight)	1,45
	Value		Topsoil pH (H2O)	5,1
Longitude	-2,81 W	_	Topsoil CEC (clay) (cmol/kg)	32
Latitude	47,75 N	_ 1	Topsoil CEC (soil) (cmol/kg)	12
Soil Mapping Unit	9512	_ 1	Topsoil Base Saturation (%)	38
Dominant Soil Group	Cambisols		Topsoil TEB (cmol/kg)	4,3
			Topsoil Calcium Carbonate (% weight)	0
			Topsoil Gypsum (% weight)	0
			Topsoil Sodicity (ESP) (%)	2

Source: http://www.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/

Plate 2. Average annual reference evapotranspiration (Penman-Monteith)

Source: FAO (Global Agro-Ecological Zones Assessment) http://www.iiasa.ac.at/Research/LUC/GAEZ/

Case studied

FU: 1 kg of grain maize or	FRANCE	BRAZIL	
hectare	Brittany	Santa Catarina State	
Soil classification (FAO)	Cambisol	Nitisol	
Clay / Silt / Sand (%)	20 / 48 / 32	62 / 35 / 3	
Organic matter (%)	4	3	
Slope length (m)	100	100	
Slope steepness %	4	4	
Soil depth (cm)	30	30	
Density (t/m ³)	1.23 (measured) (1.41 simul.)	1.16 (simulated)	
Climate	Oceanic	Humid sub-tropical	
Mean annual T (°C)	11	21	
Mean annual precip. (mm)	1060	2200	
ETP (mm)	656	1032	
Pig slurry applied	30 m³/ha	40 – 56 – 115 m³/ha	
Tillage practices	Tillage	Tillage / No tillage	
Crop rotation	Maize– Maize	Maize - Maize	

Results – Erosion and S.O.M. change

Sensitivity analysis

RUSLE2	t soil loss / ha / yr		
Variable	Variation	Brittany	Brazil
O.M.	+/- 20%	-0.	1 -0.063
residue	+/- 20%	-0.	1 -0.052
Rock Cover 1%	+/- 20%	-0.05	2 0
Rock Cover 5%	+/- 20%	-0.11	4 -0.143
Slope lenght	+/- 20%	0.3	2 0.125
Texture	+/- 10%	0.85	1 0.654
Texture	+/- 20%	0.81	9 0.737
Temperature	+/- 20%		1 0.64
Slope steepness	+/- 20%	1.04	4 <u>1.125</u>
Precipitation	+/- 20%	1.3	7 1.38

 $SensitivityIndex = \frac{\frac{O_h - O_l}{O_m}}{\frac{I_h - I_l}{I_h - I_l}}$

Roth C		t C / ha		
Variable	Variation	Brit	Braz	
Clay	+/- 20%		0.041	0.006
Precipitation	+/- 20%		-0.106	-0.265
ЕТР	+/- 20%		0.223	0.355
Temperature	+/- 20%		-0.404	-0.582
Meas. Tot. C (72)	+/- 20%		0.566	0.724
Meas. Tot. C (52.2)	+/- 20%		0.484	0.653
Residue	+/- 20%		0.444	0.353
Residue	+/- 50%		0.436	0.882

16

Multiple-site aggregation

Conclusions -Perspectives

- Choice of MDS according to impact selected in the inventory allows a methodological framework which can evolve continously
- Importance of taking into account all on-site and upstream agricultural soils
- What levels of precision for the data ?
- What about compaction and salinization ?
- Aggregation into midpoint indicator of soil quality ?

Thank you for your attention