0

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Federal Department of Economic Affairs FDEA Agroscope Reckenholz-Tänikon Research Station ART

The advantages of generic LCA tools for agriculture: examples SALCAcrop and SALCAfarm

<u>Thomas Nemecek</u> Ruth Freiermuth Knuchel Martina Alig Gérard Gaillard

Agroscope Reckenholz-Tänikon Research Station ART CH-8046 Zurich, Switzerland <u>http://www.agroscope.ch</u> <u>thomas.nemecek@art.admin.ch</u>

LCA food 2010 – Bari - 24 September 2010

Overview

- Introduction
- SALCA concept
- Estimating direct field emissions
- Impact assessment
- Principles of SALCA tools implementation
- SALCAcrop
- SALCAfarm
- Embedding into IT architecture
- Conclusions

Introduction

- LCA is a data intensive method
 → need for efficient data management
- High variability and complexity of agricultural production + small production units (farms)
 - \rightarrow environmental models and data adapted to agriculture
 - \rightarrow many LCA calculations needed for representative results
 - \rightarrow efficient LCA calculation procedures required
- Various demands from stakeholders (environmental management of farms, environmental product declaration, selection of raw materials, research, etc.)

 \rightarrow need for integrative concept as a basis for manifold uses

SALCA: An integrated concept for agricultural environmental assessment

<u>SALCA</u> = <u>Swiss</u> <u>Agricultural</u> <u>Life</u> <u>Cycle</u> <u>Assessment</u>

SALCA consists of the following elements:

- Database for life cycle inventories for agriculture (in collaboration with ecoinvent)
- ➡ Models for the calculation of **direct emissions from field and farm**
- A selection of **impact assessment methods (midpoints)**
- Methods for the assessment of impacts on biodiversity and soil quality
- **Calculation tools** for agricultural systems (farm, crop)
 - Interpretation scheme for agricultural LCA
 - Communication concept for the environmental management of farms

The advantages of generic LCA tools for agriculture Thomas Nemecek | © Agroscope Reckenholz-Tänikon Research Station ART

Estimating direct field and farm emissions

Ideal emission models should

- Reflect the underlying environmental mechanisms
- Be site and time dependent
- Consider the effect of soil and climate
- Consider the effect of management
- Be applicable under a wide range of different situations
- The different models should have a similar level of detail
- But also be usable:
 - Parameters are measurable
 - Data can be collected in a reasonable time
 - Calculation is feasible

A compromise is needed!

SALCA emission models

Emission	Description	Reference
Ammonia (NH ₃)	Considers type of fertiliser, climate, time and technique of application	Menzi <i>et al</i> . (1997)
Nitrous oxide (N ₂ O)	Direct and indirect emissions	IPCC (2006)
Nitrate (NO ₃ ⁻)	Monthly balance, considering crop, sowing and harvest dates, soil tillage, timing and quantity of N fertilisation	Richner <i>et al.</i> (2006)
Phosphorus (P, PO ₄ ³⁻)	Includes erosion, run-off and leaching, considers P fertilisation, soil characteristics, topography	Prasuhn (2006)
Heavy metals (Cd, Cr, Cu, Hg, Ni, Pb, Zn)		
Methane (CH ₄)	Enteric fermentation and manure management	IPCC (2006)

The advantages of generic LCA tools for agriculture Thomas Nemecek | © Agroscope Reckenholz-Tänikon Research Station ART

SALCA impact assessment methods

Impact category	Reference	Remarks
Non-renewable energy demand	Ecoinvent (2007)	Fossil und nuclear energy resources
Global warming potential	IPCC (2007)	
Ozone formation potential	EDIP (2003)	With regionalisation
Eutrophication potential	EDIP (2003)	With regionalisation
Acidification potential	EDIP (2003)	With regionalisation
Aquatic and terrestrial ecotoxicity Human toxicity	CML (2001)	Complemented with characterisation factor for ca. 400 pesticide active ingredients
Biodiversity	Jeanneret et al. (2006)	11 indicator organism groups2 characteristics
Soil quality Oberholzer et al. (2006)		9 indicators for physical, chemical and biological soil properties

Principles of SALCA tools: Organisational structure

- Generic LCA systems to cover all types of farms (SALCAfarm) or crops (SALCAcrop) within the validity range
 - \rightarrow wide range of applications
 - \rightarrow applicable for multiple purposes

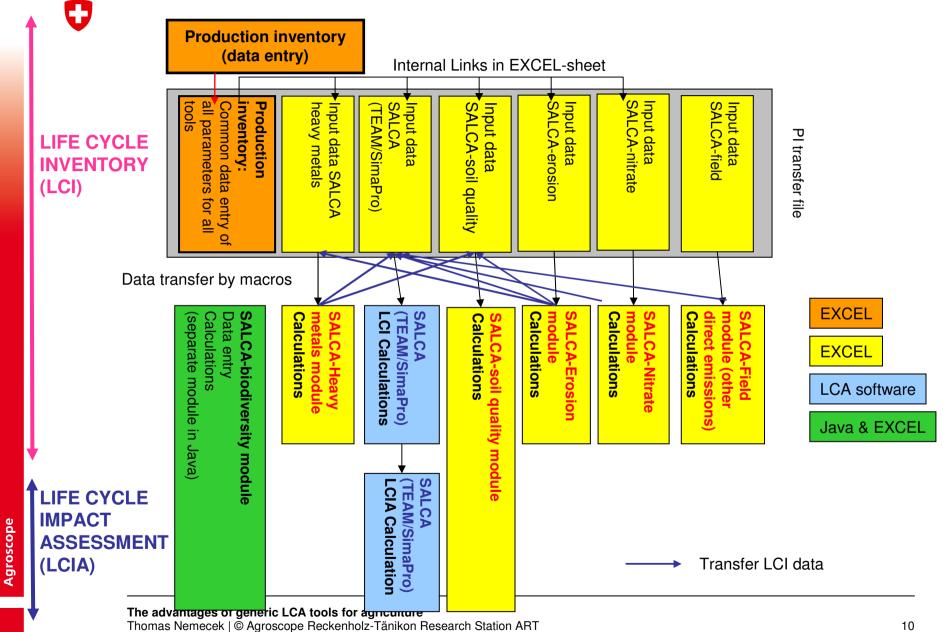
Standardised LCA calculation

- \rightarrow ensures consistency
- \rightarrow avoids redundancy

Parameterisation

- \rightarrow inputs and processes defined by variables
- ightarrow non-existing inputs and processes set to 0
- \rightarrow hundreds to thousands of parameters

Modular structure


- \rightarrow each module has clearly defined interfaces
- \rightarrow modules can also be used/tested independently
- \rightarrow complexity can be managed
- Illustrated by the example of SALCAcrop

SALCAcrop

- System boundary: 1 crop per growing season
 - By multiple calculations it can represent also crop rotations and permanent crops
- 140 arable/permanent crops and vegetables covered
- Valid for Central Europe

	С	D	F	G	Н		J	K	L	М	N	0
1			Crop rotat	tion without	GL			Crop rotati	ion with GL			
2												
3		VARIABLE	INPUT	INPUT	INPUT	INPUT	INPUT	INPUT	INPUT	INPUT	INPUT	INPUT
			Saxonv 1 OSR	Saxony_2_VWV1	Saxony_3_VWV2	Saxony_4_VWV3	Saxony_5_WB	Saxony_GL_1_OSR	Saxony_GL_2_WW1	Saxony_GL_3_pea	Saxony_GL_4_VWM	Saxony_GL_5_WB
	MODULES	NAME										
	N-Dünger Total	N Kalk-Ammoniumnitrat (kg N)	51.30		186.30					0.00		135.00
	N-Dünger Total	N Ammoniumsulfat (kg N)	0.00	0.00	0.00	0.00	0.00	0.00		0.00		
	P-Dünger Total	P Triple-Superphos. (kg P2O5)	53.67	53.67	53.67	46.00	46.00	46.00		53.67	53.67	53.67
	P-Dünger Total	P Superphosphat (kg P2O5)	0.00	0.00	0.00	0.00	0.00	0.00		0.00		
	P-Dünger Total	P Monoammoniumphosphat (MAP, kg P2O5)	0.00	0.00	0.00	0.00	0.00	0.00				
	P-Dünger Total	P Diammoniumphosphat (DAP, kg P2O5)	0.00	0.00	0.00	Atory	100	211 0.00				
	P-Dünger Total	P AN-Phosphat (kg P2O5)	0.00	0.00	. Ne	0.00	26100	0.00		0.00		
_		P Hyperphosphat (Rohphosphat, kg P2O5)	0.00	0.00	0.00	c in	0.00	0.00		0.00		
	P-Dünger Total	P Thomasmehl (kg P2O5)	0.00	ation	0.00	15 10.00	0.00	0.00		0.00		
	K-Dünger	K Kalisalz (KCl, kg K2O)	29 6	29.33	tatio	57.00	57.00	44.00		0.00		
	K-Dünger	K Kaliumsulfat (K2SO4, kg K2O)	prov	, and a	J - 0.00	0.00	0.00	0.00		0.00		
	K-Dünger	K Patentkali (kg K2O)	15.77	CLOB 77	15.77	0.00	0.00	8.25		44.00		
	Andere Total	Ca Kalk (kg Ca)	10:00	0.00	0.00	0.00	0.00	0.00		0.00		
_	Andere Total	Ca Karbonationskalk (kg Ca)	010.00	0.00	0.00	0.00	0.00	0.00		0.00		
86	Andere Total	Ca Meeresalgenkalk (kg Ca)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
87	Andere Total	P Triple-Superphos. (kg P2O5) P Superphosphat (kg P2O5) P Monoammoniumphosphat (MAP, kg P2O5) P Diammoniumphosphat (DAP, kg P2O5) P AN-Phosphat (kg P2O5) P Hyperphosphat (Rohphosphat, kg P2O5) P Thomasmehl (kg P2O5) K Kalisalz (KCl, kg K2O) K Kaliumsulfat (K2SO4, kg K2O) K Patentkali (kg K2O) Ca Kalk (kg Ca) Ca Karbonationskalk (kg Ca) Ca Meeresalgenkalk (kg Ca) Mg Magnesium (kg Mg) Steinmehl (kg)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	Andere Total	Steinmehl (kg)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
89												
90	Weitere Hilfsstoffe Tot	al Wasser (Leitung, Alloc)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		al Wasser (Quelle/Bach Alloc)	1.00	1 1 00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Modular architecture of the SALCA-crop V3.1

Principles of SALCA tools: Software implementation

Automated workflow

 \rightarrow efficient calculation procedure

Batch processing

- \rightarrow mass calculation
- \rightarrow many farms or crops can be calculated in one run
- Core components (SALCAcrop, SALCAfarm)
 - \rightarrow own programming

Peripheral components

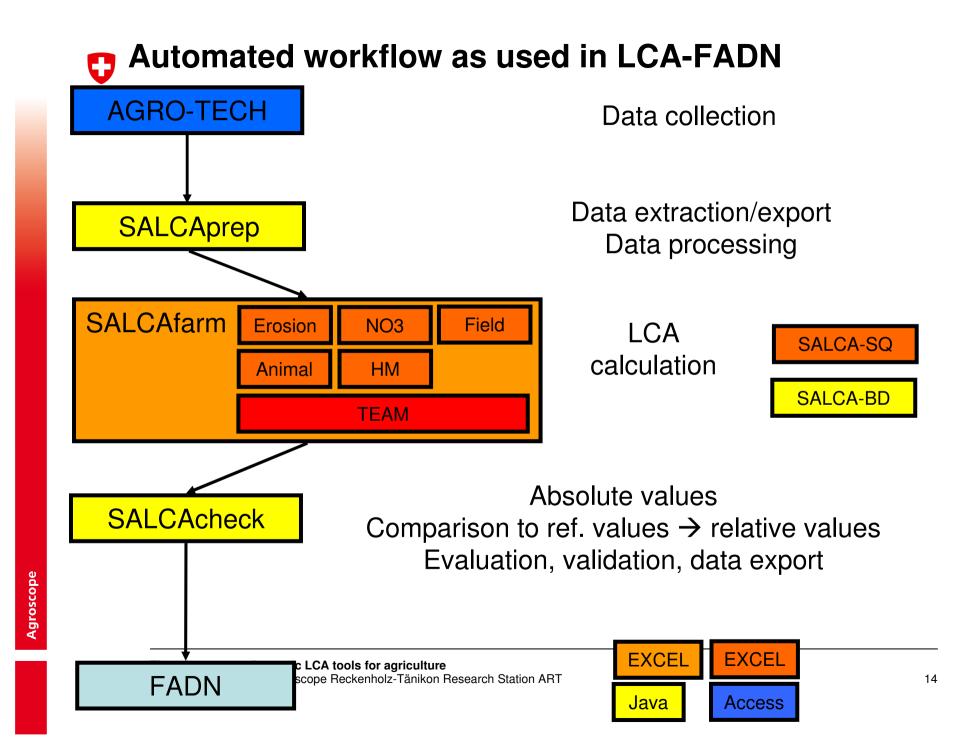
- \rightarrow IT service provider, parametrisable tools
- Illustrated by the example of SALCAfarm

SALCAfarm

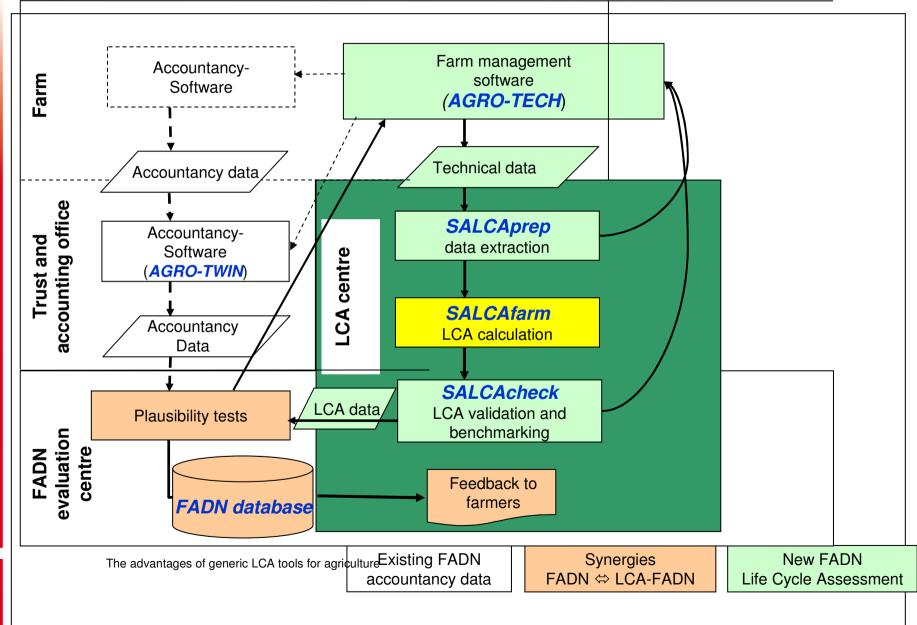
- System boundary: farm / product group
 - Can also be used for animal production systems
- Applicable for Swiss conditions
- Four system levels:
 - Farm
 - Product group (up to 14 product groups)
 - Field
 - Crop

Agroscope

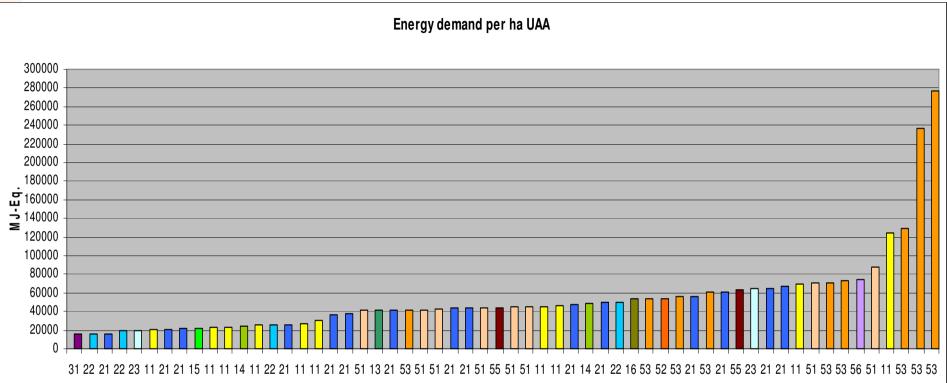
 Allocation of inputs and outputs to the product groups by a set of allocation rules (economic, area, arable area, livestock units)



SALCAfarm:


Iterative calculation procedure at several levels

ſ		Calculation level			
	Module	Crop	Field	Farm / product group	
/	SALCAerosion	U	U		
/	SALCAnitrate	U	U		
	SALCAfield	U	U		
	SALCAheavyMetals			Ŭ	
	SALCAanimal			Ŭ	


The advantages of generic LCA tools for agriculture Thomas Nemecek | © Agroscope Reckenholz-Tänikon Research Station ART

Embedding into existing IT infrastructure Workflow in the project LCA-FADN

Variability of environmental impacts: Energy demand per ha UAA (62 Swiss farms)

Agroscope

Farmtype	Description	Farmtype	Description
11	arable farming	23	other cattle
13	vegetable cultivation	31	horses/goats/sheep
14	fruit cultivation	51	dairy farm / arable farming combined
15	viticulture	52	suckler cows / arable farming combined
16	other cultures	53	pigs and poultry / arable farming combined
21	dairy farm	55	dairy farms / other combined
22	suckler cows	56	cattle / other combined

16

Conclusions

- Advantages of generic LCA tools
 - Consistent, standardised calculation of a large number of LCAs
 - More efficient calculation \rightarrow allows to assess variability better
 - Avoids redundancy \rightarrow changes and improvements made only once
 - Flexibility by parameterisation
- Drawbacks of generic LCA tools
 - Time-consuming development
 - System gets more complex (need to consider all cases) → modular structure required
- Generic LCA tools are required
 - to handle large datasets
 - to assess variability
 - to foster agricultural LCA

ART – Research for Agriculture and Nature

ANIMALCA | Peer Review ART 2010 Thomas Nemecek | © Agroscope Reckenholz-Tänikon Research Station ART