

Carbon footprint of school meals

Namy Espinoza-Orias and Adisa Azapagic

7th International Conference on LCA in the Agri-Food Sector Bari, September 23, 2010

Outline

Introduction

Objectives of the study

System boundaries

Scenarios under analysis

Results

7.3 million registered pupils (ages 4-18)

Annual budget: £1.2 billion of public funds

Food-based and nutrient-based standards in place since 2009

School meals served to 41.4% of students in primary school and 35.8% of students in secondary schools

Average price: £ 1.90/meal

Introduction

Objectives

To evaluate GHG emissions from

a) in-house catering servicesb) contract catering services

providing school meals.

To identify GHG emissions hotspots within the assessed food delivery systems.

Functional unit

A week menu of freshly prepared meals, catering for school-age pupils, consisting of

> Main dish Side-dish Dessert

and ready to be served to pupils at the school canteen.

CaLC

The University of Manchester

In-house catering scenario

Energy consumption for catering in UK schools: 10% of energy use 11% of energy cost (Carbon Trust, 2007)

I school

School size: 350 pupils

Fresh meals prepared daily

3% vegetarian students

The University of Manchester

Hub and spoke scenario

10 schools

School size: 300 – 400 pupils

Distance to kitchen: 3 – 10 km

Food prepared through the week

3% vegetarian students

100 % Take-up of meals

System boundaries

Week menu

Carbon footprint of omnivorous week menu

Carbon footprint of vegetarian week menu

Results

Carbon footprint of school meals provision

Results

Carbon footprint of school meal provision

School size [Number of pupils]

Results

Relative contribution of life cycle stages

The hot-spot stages in the lifecycle of school meals are production of ingredients and preparation of meals.

Reductions in GHG emissions can be achieved by changes in menu design rather than provenance of ingredients.

Further work required on allocation of energy and water consumption to each type of meal.

Conclusions

Acknowledgments

The CCaLC project was funded by Carbon Trust, EPSRC and NERC

For more information visit:

