

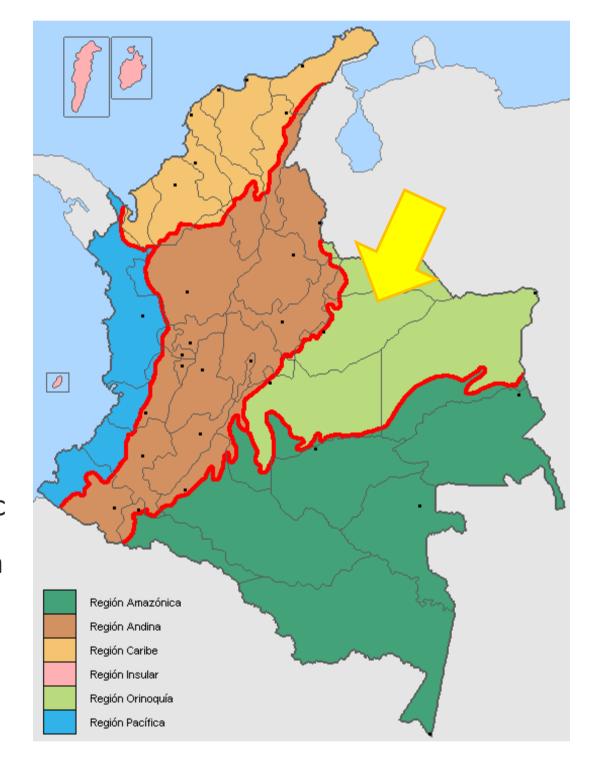
VII international conference on life cycle assessment in the agri-food sector

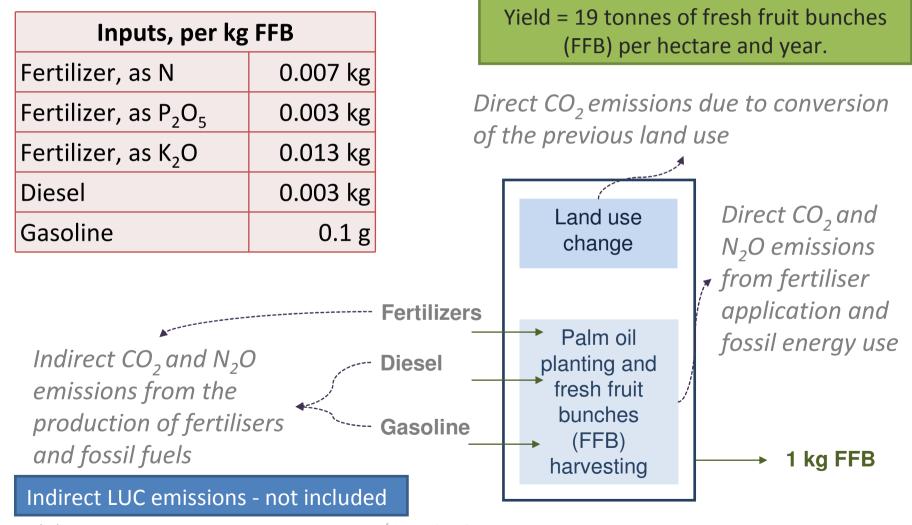
CO₂ and N₂O emissions from palm oil plantations: impacts of land use and LUC

Érica G. Castanheira erica@dem.uc.pt
Fausto Freire fausto.freire@dem.uc.pt

Center for Industrial Ecology
University of Coimbra – Portugal
http://www2.dem.uc.pt/CenterIndustrialEcology/

Motivation and Goal


- The calculation of GHG emissions related with land use and LUC has been a focus of controversy.
- LC GHG studies for palm oil, most of the research is for Malaysia and Indonesia (Wicke *et al.*, 2008; Reijnders and Huijbregts, 2008; Schmidt, 2010).
- The production in Latin American countries has been treated rarely and does not include emissions from LUC.


Main goal: To evaluate the CO₂ and N₂O emissions of Colombian palm oil plantations for different LUC scenarios and various types of N-fertilizer production.

Palm oil plantation in Colombia

A palm oil plantation LC
model has been
implemented based on
data collected for a specific
plantation in the Orinoquía
Region of Colombia

Life Cycle Inventory and Modelling

Scenarios definition

Scenario				
	Reference Land use			
L1	Tropical forest	Tropical rain forest		
L2		Amazon		
L3		Colombian primary forest		
L4		Forest plantations		
L5	Grassland, including savannahs	Consequence		
L6		Savannahs		
L7		Inches was and announced area of		
L8		Improved grassland		
L9		Moderately degraded grassland		
L10		Severely degraded grassland		

Above ground living biomass obtained from

EC Decision defaults

Colombian Amazon

A model statistics by vegetation class for Colombia

EC Decision defaults

The Orinocos plains in Colombia

A model statistics by vegetation class for Colombia

Medium input, where no additional management inputs have been used High input, where one or more additional management inputs/improvements have been used

Scenario	Synthetic N-fertilizer scenarios							
	Туре	N- content	Emission factor, per kg fertilizer (as N)		Source			
			kg CO ₂	kg N₂O				
AS	Ammonium sulphate	21%	2.64	0.00003	Davis and Haglund (1000)			
AN1		35%	2.89	0.0189	Davis and Haglund (1999) ^a			
AN2			2.78	0.0140	Davis and Haglund (1999) ^b			
AN3	Ammonium nitrate	33.5%	2.74	0.0145	Kramer et al. (1999)			
AN4			1.90	0.0153	Elsayed et al. (2003)			
AN5			1.49	0.0176	Kuesters and Jenssen (1998)			
CAN1	Calcium ammonium	26.5%	3.00	0.0189	Davis and Haglund (1999) ^a			
CAN2			2.98	0.0152	Davis and Haglund (1999) ^b			
CAN3	nitrate	27.9%	2.64	0.0138	Kramer et al. (1999)			
CAN4	initiate	27.6%	3.24	0.0173	Davis and Haglund (1999) ^c			
CAN5		27.2%	3.19	0.0211	Davis and Hagiund (1999)			
U1	Urea	46%	3.16	4.13x10 ⁻⁵	Davis and Haglund (1999) ^a			
U2	Orea		3.92	1.35x10 ⁻⁵	Davis and Haglund (1999) ^b			
UAN1		32%	2.94	0.0095	Davis and Haglund (1999) ^a			
UAN2	Urea ammonium nitrate		1.34	0.0078	Kuesters and Jenssen (1998)			
UAN3			3.41	0.0076	Davis and Haglund (1999) ^b			
	Organic N-fertilizer scenario							
	Туре	N- content	Emission factor, per kg of					
			poultry		Source			
			kg CO ₂	kg N ₂ O				
Р	Poultry manure, dried	4.6% ^d	0.1	2.2x10 ⁻⁶	Nemecek and Kägi (2007)			

CO₂ emissions from LUC

<u>Land use change</u> - affects the carbon stocks in biomass, in dead organic matter and in soil:

Tier 1 - IPCC guidelines (2006) and Commission Decision of 10 June 2010

Carbon stock change due to LUC = $Cs_{reference\ LU} - Cs_{actual\ LU} - e_B$

$$CS_i = SOC + C_{VEG}$$

$$C_{VEG} = C_{BM} + C_{DOM}$$

SOC - Soil organic carbon:

$$SOC = SOC_{ST} \times F_{LU} \times F_{MG} \times F_{I}$$

C_{DOM} - Carbon stock in dead organic matter:

$$C_{DOM} = C_{DW} + C_{LI}$$

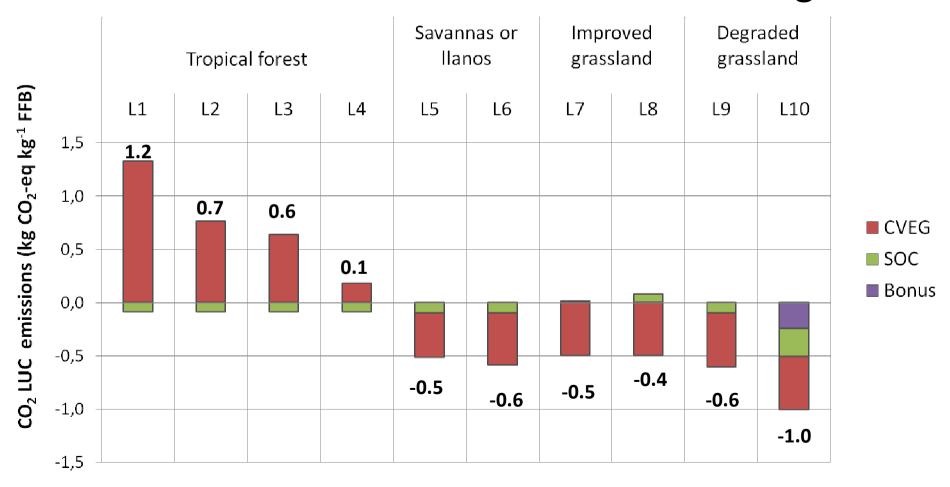
 C_{BM} - Above and below ground vegetation carbon stock in living biomass:

$$C_{BM} = C_{AGB} + C_{BGB} = (B_{AGB} \times CF_B) + (B_{AGB} \times CF_B) \times R$$

Factors reflecting the difference in SOC compared to the SOC_{ST} use

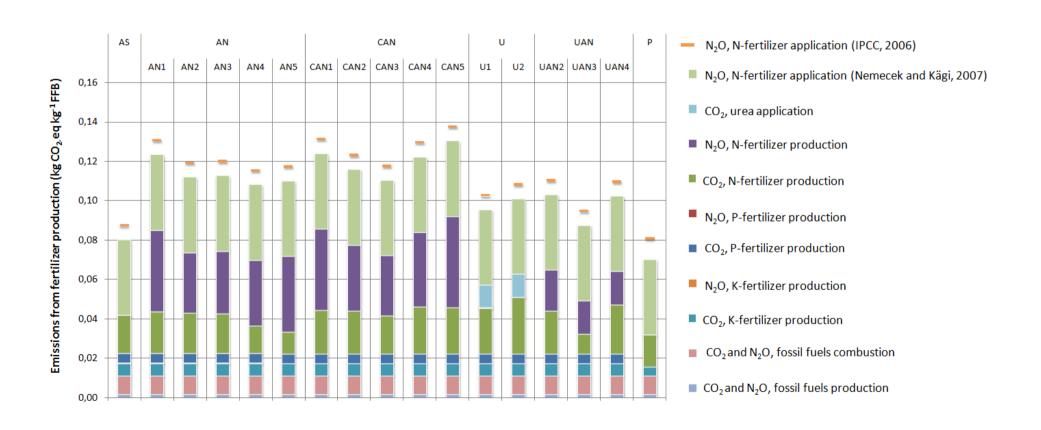
Reference land use, R (Scenarios)		Land use F _{LU}	Management F _{MG}	Input F _i
	L1	Native forest (1)	n/a	n/a
Forest land	L2	Native forest (1)	n/a	n/a
rorestianu	L3	Native forest (1)	n/a	n/a
	L4	Managed forest (1)	All (1)	All (1)
	L5	Savannah (1)	Nominally managed (1)	Medium (1)
Grassland,	L6	Savannah (1)	Nominally managed (1)	Medium (1)
,	L7	Savannah (1)	Improved (1.17)	Medium (1)
including	L8	Savannah (1)	Improved (1.17)	High (1.11)
savannahs	L9	Savannah (1)	Moderately degraded (0.97)	Medium (1)
	L10	Savannah (1)	Severely degraded (0.7)	Medium (1)
Actual land	use, A	Land use F _{LU}	d use F _{LU} Management F _{MG} II	
Oil palm plantation		Perennial crop (1)	Reduced tillage (1.15)	Medium (1)

Carbon stock calculations - values for AGB, BGB and DOM

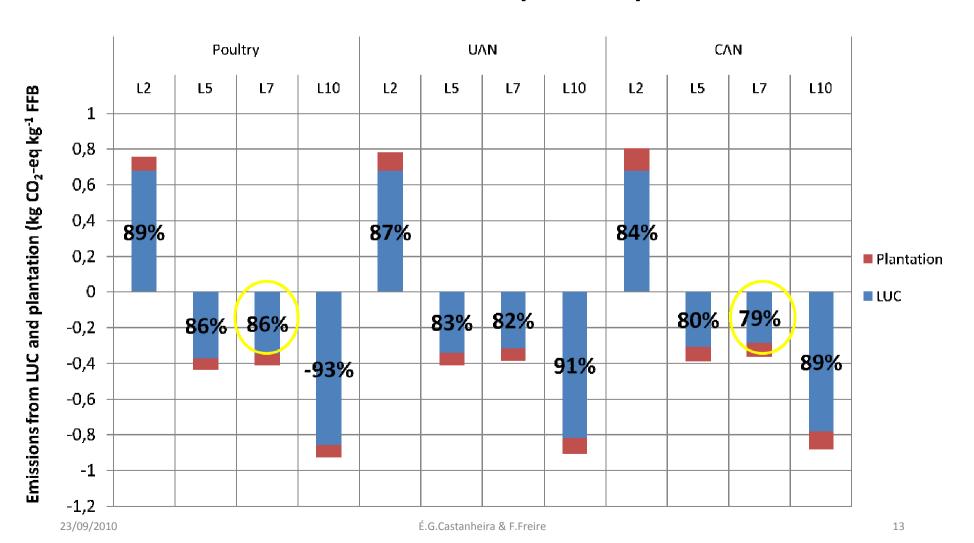

Reference land use, R (Scenarios)		B _{AGB}	R	C _{DW}	C _{LI}	C _{VEG}
		tonnes d.m. ha ⁻¹	tonnes root d.m. tonne shoot d.m. ⁻¹	tonnes C ha ⁻¹		C ha ⁻¹
	L1	-	-	-	-	198ª
Forest land	L2	291	0.24	0	2.1	139.1 ^b
rolest lallu	L3	264	0.20	0	2.1	126.4 ^b
	L4	-	-	-	-	79 ^a
Grassland,	L5	37	0	0	0	17.4 ^b
including	L6	21	0	0	0	9.9 ^b
savannahs	L7, L8, L9, L10	-	-	-	-	8.1ª
Actual land use, A		B _{AGB}	R	C _{DW}	C _{LI}	C _{VEG}
Oil palm plantation		-	-	-	-	60ª

Calculating CO₂ and N₂O emissions

- CO₂ emissions from <u>fossil fuels production and used</u> have been calculated based on IPCC Guidelines (2006) and Jungbluth (2007).
- CO₂ and N₂O emissions from <u>N-fertiliser production</u> are calculated using different emission factors depending on the type and N-content of fertilizer (<u>scenarios</u>).
- The emission factors for <u>diammonium phosphate production</u> are given by Davis & Haglund (1999) and for <u>potassium chloride</u>
 <u>production</u> by Kongshaug (1998) and Aktiengesellschaft (2001).
- The direct and indirect N₂O emissions that result from <u>N-fertiliser</u>
 <u>application</u> are calculated based on the IPCC Guidelines (Tier 1) and
 Nemecek and Kägi (2007)
- For <u>urea application</u>, an emission factor of 1.57 kg of CO₂ kg⁻¹ urea-N has been assumed.


Results and discussion

CO₂ emissions due to the LUC Partial contribution of carbon stock changes


Results and discussion

Palm oil plantation CO₂ and N₂O emissions

Results and discussion

Contribution of LUC and palm oil plantation

Conclusions

- The original land use is a critical issue and large variations can be observed between the various LUC scenarios.
- To assure the sustainability of palm oil plantations, degraded land should be preferably used for palm oil cultivation, followed by savannas or *llanos*.
- Emissions due to the LUC dominate the total CO₂-eq emissions in the scenarios where tropical forest is converted.
- Fertilizer production and application emissions represent more than 70% of the overall emissions when the LUC emissions are not considered.
- The lowest emissions occur in the scenarios where poultry manure and AS are used as N-fertilizer.

Acknowledgements

•Helmer Acevedo and Richard Pardo, Faculty of Engineering of the National University of Colombia (Bogotá D.C.)

•Portuguese Science and Technology Foundation (FCT) projects:

•MIT/SET/0014/2009 Capturing Uncertainty in Biofuels for Transportation: Resolving Environmental Performance and Enabling Improved Use

•PTDC/TRA/72996/2006 Biofuel systems for transportation in Portugal: A "well-to-wheels" integrated multi-objective assessment

Doctoral grant SFRH/BD/60328/2009 from Portuguese FCT

