

www.seatglobal.eu 🧳

LCA of aquaculture systems

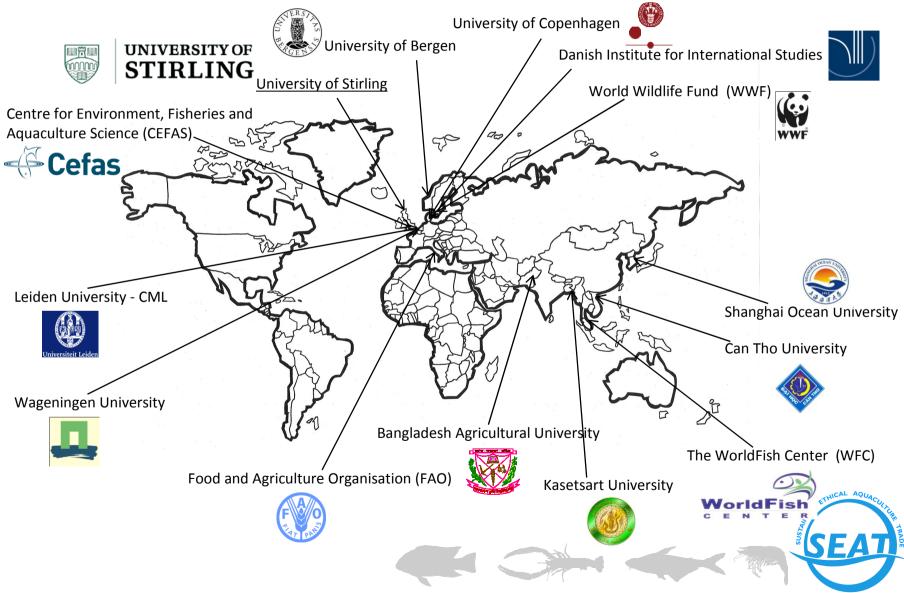
- Review of existing aquaculture LCAs -

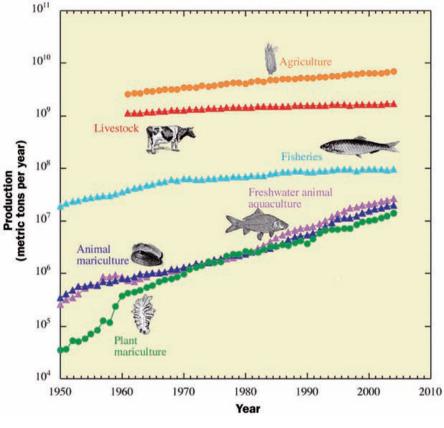
Patrik Henriksson, Jeroen Guinée & Rene Kleijn

Leiden University – Institute of Environmental Sciences (CML)

Contents

- The SEAT project
- Review of existing aquaculture LCA studies
 preliminary review results
- Conclusions and SEAT LCA plans


The SEAT project


- Sustaining Ethical Aquaculture Trade
 - EU, 7th Framework Programme
 - Large collaborative project
 - "Food, Agriculture and Fisheries, and Biotechnology"
- Coordinator:
 - Institute of Aquaculture, The University of Stirling, UK
- Period:
 - 2009-2013
- Project website: <u>http://seatglobal.eu/</u>

14 Partners over Europe and Asia

SEAT motives

Duarte et al. 2009

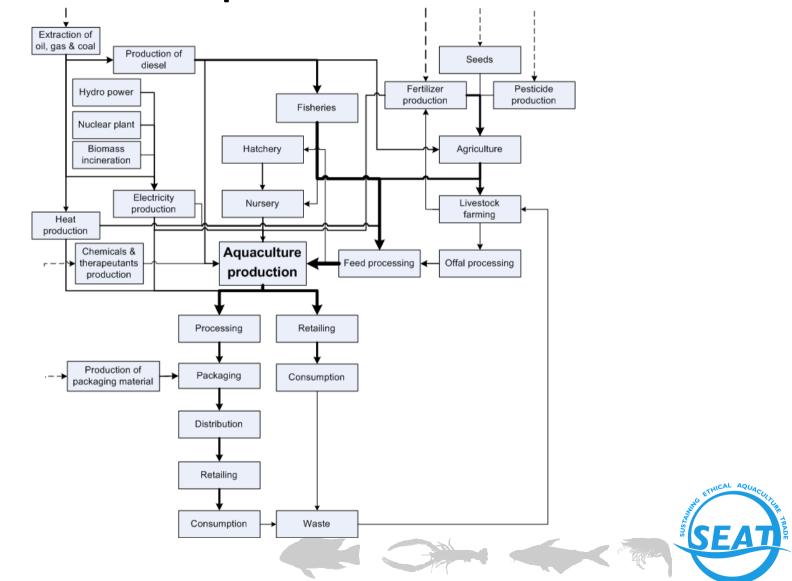
- Global fisheries levelled off in the early 1990s
- Growing global demand for seafood
- Growing seafood imports in the EU from Asia



SEAT aims

- To gain and disseminate an in depth understanding of emergent Asian aquatic food production/ market chains from a holistic systems perspective through an interdisciplinary effort
- To develop improved and transparent measures of sustainability for target aquatic food production systems
- To enhance the sustainability and ethical 'values' of four major aquatic food commodities
- To enhance farmed aquatic food, scientific, business and policy linkages between Asia and Europe
- Dissemination of LCA: training of partners 2 weeks ago

Objects of SEAT



Role of LCA

- One tool among others
 - Risk Assessment, Global Value Chain, social, antibiotic and ethical assessments etc.
- Focusing on a holistic environmental assessment, hot spot identification and problem shifting
 - no "silver bullet"
 - focus on whole life cycle, cradle-to-grave (kitchen?) and broad range of impacts (but not all impacts; no "silver bullet")

Example flow chart

Review of existing aquaculture LCAs

Author	Title	Journal
Papatryphon et al. 2004	Environmental impact assessment of salmonid feeds using Life Cycle Assessment (LCA)	Ambio
Mungkung 2005	Shrimp aquaculture in Thailand: application of life cycle assessment to support sustainable development	PhD thesis
Aubin et al. 2006	Characterisation of the environmental impact of a turbot (Scophtalmus maximus) re-circulating production systems using Life Cycle Assessment	Aquaculture
Ellingsen & Aanondsen 2006	Environmental Impacts of Wild Caught Cod and Farmed Salmon – A Comparison with Chicken	Int. Journal of LCA
Grönroos et al. 2006	Life cycle assessment of Finnish cultivated rainbow trout	Boreal Environ. Research
Pelletier & Tyedmers 2007	Feeding farmed salmon: Is organic better?	Aquaculture
Aubin et al. 2009	Assessment of the environmental impact of carnivorous finfish production systems using life cycle assessment	J. of cleaner production
Ayer & Tyedmers 2009	Assessing alternative aquaculture technologies: life cycle assessment of salmonid culture systems in Canada	J. of cleaner production
d'Orbcastel et al. 2009	Towards environmentally sustainable aquaculture: Comparison between two trout farming systems using Life Cycle Assessment	Aquacultural Engineering
Pelletier et al. 2009	al. 2009 Not all salmon are create equal: Life cycle assessment (LCA) of global salmon farming systems	
Iribarren et al. 2010	Revisiting the Life Cycle Assessment of mussels from a sectorial perspective	J. of cleaner production
Pelletier & Tyedmers 2010	A life cycle assessment of frozen Indonesian tilapia fillets from lake and pond- based production systems	J. of Industrial Ecology
Phoung et al. 2010	Life Cycle Assessment of food production in Integrated Agriculture- Aquaculture Systems of the Mekong Delta	

Preliminary results with respect to:

- Species
- Regions
- Functional unit
- System boundaries
- Data(bases)
- (Allocation)
- Impact assessment
- etc.

Species & regions

Species	Region	Author	Institution
Salmonoid	France	Papatryphon <i>et al.</i> 2004	INR
Turbot	France	Aubin <i>et al.</i> 2006	INRA/ IFREMER
Rainbow trout, sea-bass and turbot	France	Aubin <i>et al.</i> 2009	'REN
Trout	France	d'Orbcastel et al. 2009	IER
Atlantic salmon	Canada	Pelletier & Tyedmers 2007	
Salmon & Arctic char	Canada	Ayer & Tyedmers 2009	Dalhousie University
Atlantic salmon	Global	Pelletier <i>et al.</i> 2009	ousie ersity
Tilapia	Indonesia	Pelletier & Tyedmers 2010	,
Shrimps	Thailand	Mungkung 2005	
Rainbow trout	Finland	Grönroos et al. 2006	Other
Atlantic salmon	Norway	Ellingsen & Aanondsen 2006	ler
Blue mussels	Spain	Iribarren <i>et al.</i> 2010	
Tilapia, kissing gourami, giant gourami,	, Viet Nam	Phoung 2010	44
silver barb, common carp, silver carp			
and Pangasius catfish			

Functional unit

Functional unit	Author	Institution
1 tonne of feed	Papatryphon <i>et al.</i> 2004	INR
1 tonne live weight at farmgate	Aubin <i>et al.</i> 2006	INRA/ IFREMER
1 tonne live weight at farmgate	Aubin <i>et al.</i> 2009	REN
1 tonne live weight at farmgate	d'Orbcastel et al. 2009	ER
1 tonne live weight at farmgate	Pelletier & Tyedmers 2007	
1 tonne live weight at farmgate	Ayer & Tyedmers 2009	Dalhousie University
1 tonne live weight at farmgate	Pelletier et al. 2009	ousie Prsity
1 tonne frozen fillets at market port	Pelletier & Tyedmers 2010	
1.8 kg consumed block of frozen shrimp	Mungkung 2005	
1 tonne ungutted fish post-mortem	Grönroos <i>et al</i> 2006	Other
200 gram processed fillets	Ellingsen & Aanondsen 2006	ler
1 kg of dry consumed mussels	Iribarren <i>et al</i> 2010	
1 kg of live fish and 1 kcal of produce	Phoung 2010	

System boundaries

Focus on	Author	
Salmonoid: <i>feeds</i>	Papatryphon <i>et al.</i> 2004	
Turbot: <i>farmgate</i>	Aubin <i>et al.</i> 2006	
Rainbow trout, sea-bass and turbot: farmgate	Aubin <i>et al.</i> 2009	
Trout: farmgate comparing different farming (flow through/	d'Orbcastel <i>et al.</i> 2009	
re-circulating) systems		
Atlantic salmon: farmgate comparing different (organic and	Pelletier & Tyedmers 2007	
conventional) feeds		
Salmon & Arctic char: farmgate comparing different farming	Ayer & Tyedmers 2009	
systems		
Atlantic salmon: <i>farmgate</i>	Pelletier <i>et al.</i> 2009	
Tilapia: European wholesaler	Pelletier & Tyedmers 2010	
Shrimps: cradle-to-grave (including consumption)	Mungkung 2005	
Rainbow trout: <i>farmgate</i>	Grönroos <i>et al.</i> 2006	
Atlantic salmon: European wholesaler	Ellingsen & Aanondsen 2006	
Blue mussels: cradle-to-grave (including consumption)	Iribarren <i>et al.</i> 2010SEAT	
Tilapia,, Pangasius catfish: <i>farmgate</i>	Phoung 2010	

Process data

- Almost all authors model to different extents relevant agricultural processes and fisheries
- Details of this modelling efforts are, however, not or incompletely published:
 - not published at all
 - inventories are reported but merely in terms of economic inputs and outputs
 - unclear whether background database are used as estimations or real foreground data have been collected

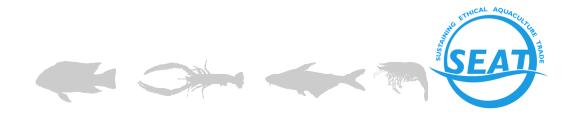
Background data(bases)

Reference	Software	Database
Panatrumbon at al 2002		ECETOC 1994; Buwal 1996; Gaillard et
Papatryphon <i>et al.</i> 2003	SimaPro 2	al.1997
Mungkung 2005	SimaPro 5.1	Included databasesAL 250 & Thai data for el
Aubin et al. 2006	Simapro 6.0	(All?) includ •ecoinvent v2
Ellingsen and Aanondsen 2006	SimaPro <	ETH-ESU 9 •US LCI data ⁴
Grönroos <i>et al.</i> 2006	KCL-ECO 2003	•US IO db ⁻ Silvenius •Danis ⁺
Pelletier & Tyedmers 2007	Simapro 7.0	(All?) j •Du [†]
Aubin et al. 2009	Simapro 6.0	(All?) in ata
d'Orbcastel <i>et al.</i> 2009	SimaPro 6	EDF, 2004 se IO dbase
Ayer & Tyedmers 2009	Simapro 7.0	Ecoinvent 🔪 🔨 🖊 dbase LCA Food
Pelletier <i>et al.</i> 2009	Simapro 7.1	ecoinvent v2
Iribarren et al. 2010	SimaPro 6	ecoinvent v2
Pelletier & Tyedmers 2010	Simapro 7.0	ecoinvent v2
Phoung <i>et al.</i> 2010	Not stated	Not stated

SEAT

Foreground data

- Foreground data focus on farm
- Economic inputs:
 - specified in detail (feed and energy inputs)
 - but their process data sourced from (non-specific) background databases (see previous slide)
- Farm environmental outputs added:
 - focus on N/P balances
 - usually quite detailed balances as most practitioners come from aquaculture backgrounds
 - little/no detail on acidifying agents, toxic agents etc.


Impact assessment

Impact category	Σ	Impact Assessment method
Global warming potential	12	Houghton <i>et al.</i> 2001 ^{1,2,3,4,5,6,7,8,9,10,11,12}
Acidification	12	Huijbregts 1999a ^{1,2,5,6,7,8.9,10,11,12} ; Goedkoop & Spriensma 2001 ³ ;
		Seppälä <i>et al.</i> 2006 ⁴ ; Heijungs <i>et al.</i> 1992 ¹²
Eutrophication	12	Heijungs <i>et al.</i> 1992 ^{1,2,4,5,6,7,8,9,10} ; Goedkoop & Spriensma 2001 ³ ;
		Seppälä <i>et al.</i> 2004 ⁴ ; Weidema <i>et al.</i> 1996 ¹²
Energy use	8	VDI 1997 ^{2,5,6,7,8,9,11} ; Goedkoop & Spriensma 2001 ³ ; Article
		specific ¹²
Biotic resource use	6	Papatryphon <i>et al.</i> 2004 ^{2,6,8} ; Pelletier & Tyedmers 2007 ^{5,9,11}
Marine aquatic ecotoxicity	4	Huijbregts 1999b ^{5,7,10} ; Meent & Klepper 1997 ^{3*}
Human toxicity	3	Huijbregts 1999b ^{1,7,10}
Freshwater aquatic & terr.	2	Meent & Klepper 1997 ^{3*} ; Huijbregts 1999b ¹⁰
ecotoxicity		
Surface use	2	Article specific ^{8, 12}
Water dependence	2	Article specific ^{6,8}
Etc.		
*To should be in a summary of a should be and a state of the second		DEATH OF A

*Ecotoxicity is summarized under one category

Conclusions (from review)

- Aquaculture LCAs are upcoming
- LCAs mainly origin from aquaculture community
- Main differences between studies:
 - species and regions
 - system boundaries
 - data, data sources, gaps and level of detail
 - impact categories and LCIA methods
 - ... more ...

SEAT LCA plans

- R
- Improvement/adaptation of LCA data and methodology to specific aquaculture requirements:
 - Inventory analysis:
 - cradle-to-grave
 - feed data, Asian specific processes
 - Impact assessment, broadening impacts & developing
 - water use
 - biotic resource use
 - land use
 - LCC
 - Standardization
 - Combining knowledge of the aquaculture and the LCA community

http://seatglobal.eu/

SEAT