
LBP GaBi – Department Life Cycle Engineering

University of Stuttgart

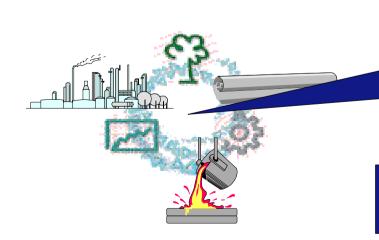
Chair of Building Physics

Life Cycle Engineering

Calculating and Illustrating Environmental Impacts of Fresh Fruit and Vegetable Packaging and Transport -the SIM-Study and -Tool

<u>Ulrike Bos</u>, Tabea Beck, Stefan Albrecht, Matthias Fischer, Sabine Deimling

	60	33, 33, 3	3000	Deutsch	Mehrwe	
Life-Cycle-Analysis". Environmental Impact Calculator - D Input	e sustainab Occumentat transport o	ility of Packaging Systems for Fruit and ion r your yearly production and select the				
rne concerned packaging has a cap	v 1000					
Number of fillings / hoves			20 🗸	Pavaahauna		*(A30924
Number of fillings / boxes Share of cardboard hoxes (%)	1000		20 🕶	Berechnung		A TANK
Share of cardboard boxes (%)	1000	54 Fillings per year (number)	5	Berechnung		Eventive Summer
Share of cardboard boxes (%) Share of plastic crates (%)	1000	54 Fillings per year (number) 46 This means, each plastic crate	5	Berechnung		Executive Summary
Share of cardboard boxes (%) Share of plastic crates (%) Fillings per plastic crate (kg)	1000	54 46 This means, each plastic crate	5	Berechnung		The Sustainability of Packag-
Share of cardboard boxes (%) Share of plastic crates (%) Fillings per plastic crate (kg)	1000	54 Fillings per year (number) 46 This means, each plastic crate	5	Berechnung		The Sustainability of Packag- ing Systems for Fruit and
Share of cardboard boxes (%) Share of plastic crates (%) Fillings per plastic crate (kg) value of goods per plastic crate (€)		54 46 This means, each plastic crate	5	Berechnung		The Sustainability of Packag- ing Systems for Fruit and Vegetable Transport in Europe based on
Share of cardboard boxes (%) Share of plastic crates (%) Fillings per plastic crate (kg) value of goods per plastic crate (€) Definition of pool composition		54 Fillings per year (number) 46 This means, each plastic crate 15	5 will be used 100 times.			The Sustainability of Packag- ing Systems for Fruit and Vegetable Transport in Europe based on Life-Cycle-Analysis –
Share of cardboard boxes (%) Share of plastic crates (%) Fillings per plastic crate (kg) value of goods per plastic crate (€) Definition of pool composition Number of transports using cardbo	pard boxes	54 Fillings per year (number) 46 This means, each plastic crate 15 15 according to defined pool composition	5 will be used 100 times.	5.400.000		The Sustainability of Packag- ing Systems for Fruit and Vegetable Transport in Europe based on Life-Cycle-Analysis – Update 2009
Share of cardboard boxes (%) Share of plastic crates (%) Fillings per plastic crate (kg) value of goods per plastic crate (€) Definition of pool composition	pard boxes	54 Fillings per year (number) 46 This means, each plastic crate 15 15 according to defined pool composition	5 will be used 100 times.			The Sustainability of Packag- ing Systems for Fruit and Vegetable Transport in Europe based on Life-Cycle-Analysis –
Chare of cardboard boxes (%) Share of plastic crates (%) Fillings per plastic crate (kg) value of goods per plastic crate (©) Definition of pool composition Number of transports using cardbo Number of transports using plastic	pard boxes	54 Fillings per year (number) 46 This means, each plastic crate 15 15 according to defined pool composition	5 will be used 100 times.	5.400.000 4.600.000		The Sustainability of Packag- ing Systems for Fruit and Vegetable Transport in Europe based on Life-Cycle-Analysis – Update 2009
Share of cardboard boxes (%) Share of plastic crates (%) Fillings per plastic crate (kg) value of goods per plastic crate (©) Definition of pool composition Number of transports using cardb Number of transports using plastic Total number of transports	pard boxes crates acc	54 Fillings per year (number) 46 This means, each plastic crate 15 15 according to defined pool composition	5 will be used 100 times.	5.400.000 4.600.000 10.000.000	Franchele manual and	The Sustainability of Packag- ing Systems for Fruit and Vegetable Transport in Europe based on Life-Cycle-Analysis – Update 2009
Share of cardboard boxes (%) Share of plastic crates (%) Fillings per plastic crate (kg) value of goods per plastic crate (©) Definition of pool composition Number of transports using cardbo Number of transports using plastic	pard boxes crates acc	54 Fillings per year (number) 46 This means, each plastic crate 15 15 according to defined pool composition	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5,400,000 4,600,000 10,000,000 100% cardboard box	Fraunber	The Sustainability of Packag- ing Systems for Fruit and Vegetable Transport in Europe based on Life-Cycle-Analysis - Update 2009 On behalf of Stiftung Initiative Metrower
Chare of cardboard boxes (%) Share of plastic crates (%) Share of plastic crate (%) Fillings per plastic crate (%) value of goods per plastic crate (%) Definition of pool composition Number of transports using cardbo Number of transports using plastic Total number of transports Results: Environmental Impar	pard boxes crates acc	State	5 5 5 will be used 100 times. 100% plastic crate (returnable)	5.400.000 4.600.000 10.000.000 cardboard box (one-way)	Fraunber	The Sustainability of Packag- ing Systems for Fruit and Vegetable Transport in Europe based on Life-Cycle-Analysis - Update 2009 On behalf of Stiftung Initiative Metrower
Chare of cardboard boxes (%) Share of plastic crates (%) Share of plastic crate (kg) value of goods per plastic crate (©) Definition of pool composition Number of transports using cardbo Number of transports using plastic Total number of transports	pard boxes crates acc	54 Fillings per year (number) 46 This means, each plastic crate 15 15 according to defined pool composition kg CO2-Equivalent	100% plastic crate (returnable) 3/075,574	5.400.000 4.600.000 10.000.000 cardboard box (one-way) 7.079.588	Fraunber	The Sustainability of Packag- ing Systems for Fruit and Vegetable Transport in Europe based on Life-Cycle-Analysis - Update 2009 On behalf of Stiftung Initiative Metrower
Share of cardboard boxes (%) Share of plastic crates (%) Share of plastic crate (%) Fillings per plastic crate (kg) value of goods per plastic crate (kg) Value of goods per plastic crate (kg) Number of transports using cardbo Number of transports using plastic Total number of transports Results: Environmental Impai Contribution to Greenhouse Effect Contribution to Overfertilization	pard boxes crates acc	54 Fillings per year (number) 46 This means, each plastic crate 15 15 according to defined pool composition ording to defined pool composition kg CO2-Equivalent kg PO4-Equivalent	5 5 5 100 times.	5.400.000 4.600.000 10.000.000 10.000.000 100% cardboard box (one-way) 7.079.588 13.083	Fraunber	The Sustainability of Packag- ing Systems for Fruit and Vegetable Transport in Europe based on Life-Cycle-Analysis - Update 2009 On behalf of Stiftung Initiative Metrower
Share of cardboard boxes (%) Share of plastic crates (%) Fillings per plastic crate (xg) value of goods per plastic crate (e) Definition of pool composition Number of transports using cardbo Number of transports using plastic Total number of transports Results: Environmental Impar	pard boxes crates acc	54 Fillings per year (number) 46 This means, each plastic crate 15 15 according to defined pool composition kg CO2-Equivalent	100% plastic crate (returnable) 3/075,574	5.400.000 4.600.000 10.000.000 cardboard box (one-way) 7.079.588	Fraunber	The Sustainability of Packag- ing Systems for Fruit and Vegetable Transport in Europe based on Life-Cycle-Analysis - Update 2009 On behalf of Stiftung Initiative Metrower



Chair of building physics – Department Life Cycle Engineering

- ➤ Founded 1989 Prof. Dr.-Ing. Peter Eyerer (IKP), since 2006 chair for building physics (LBP) of Prof. Dr.-Ing. Dipl.-Phys. Klaus Sedlbauer
- ► Interdisciplinary team of 12 full time academic staff (Chemical, mechanical, environmental, industrial and process engineers; geoecologist, economist)

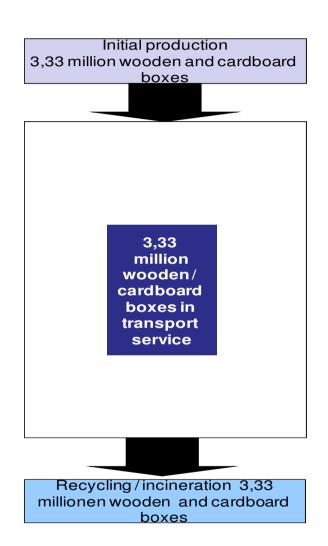
Industry and research projects on ecological-economic-technical analysis and decisionsupport of products, processes and services

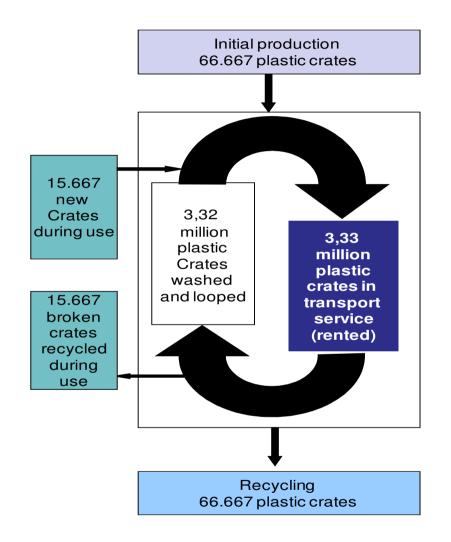
Methodology development (Life Cycle Engineering and Sustainability, substance flow analysis, Indicators)

Software and database development and maintenance (GaBi software, DfE-tools)

Outline

- SIM Study
 - System regarded
 - Results
- ► Impact Calculator
 - Inputs
 - Outputs
 - Example
- Discussion and Conclusions

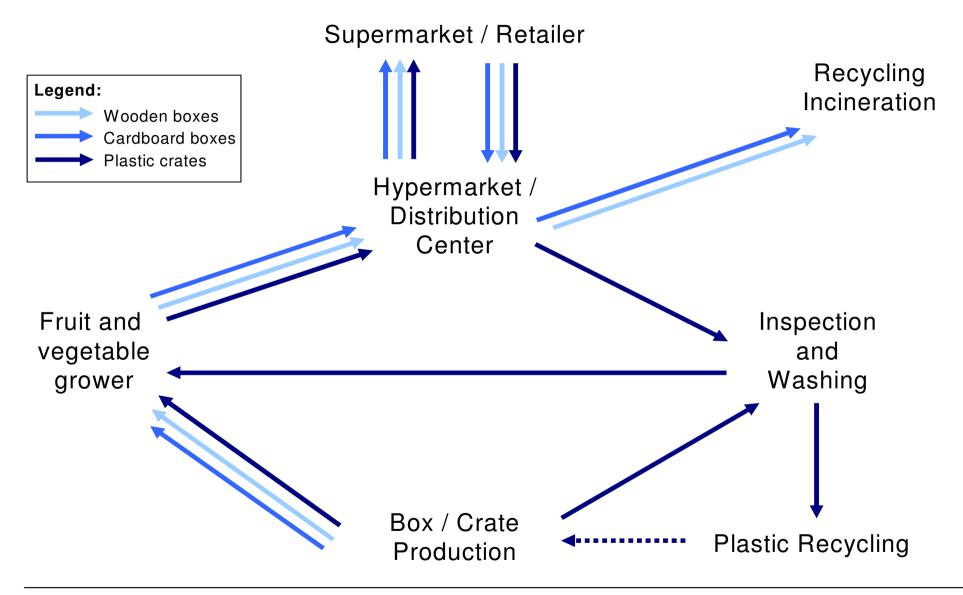



Goal and Scope

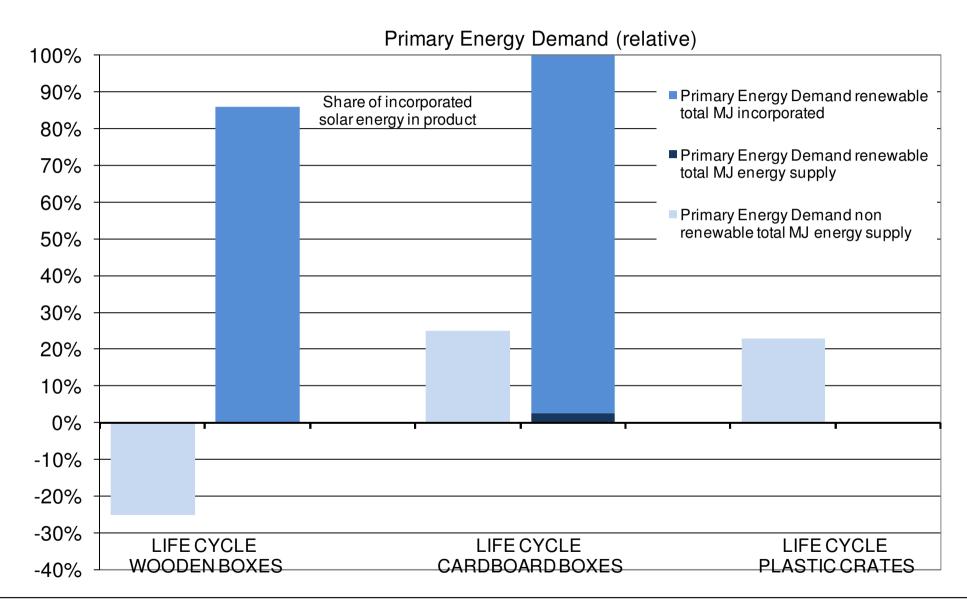
- ► LCA of the production, utilisation and end-of-life of three fruit and vegetable packaging systems (wooden boxes, cardboard boxes and plastic crates) including transport and distribution
 - Primary energy use, separated into renewable and non-renewable energy use [MJ]
 - Global warming potential GWP100 [kg CO₂ equivalents],
 - Ozone depletion potential ODP [kg R11 equivalents],
 - Acidification potential AP [kg SO₂ equivalents],
 - ► Eutrophication potential EP [kg PO₄³⁻ equivalents],
 - ► Photochemical ozone creation potential POCP [kg C₂H₄ equivalents] (CML 2001).
- ► Conformity of LCA with ISO 14040 and 14044 has been approved by a Critical Review
- Assessment of economic and social aspects (LCC and LCWE)

Functional unit / Life Cycle model

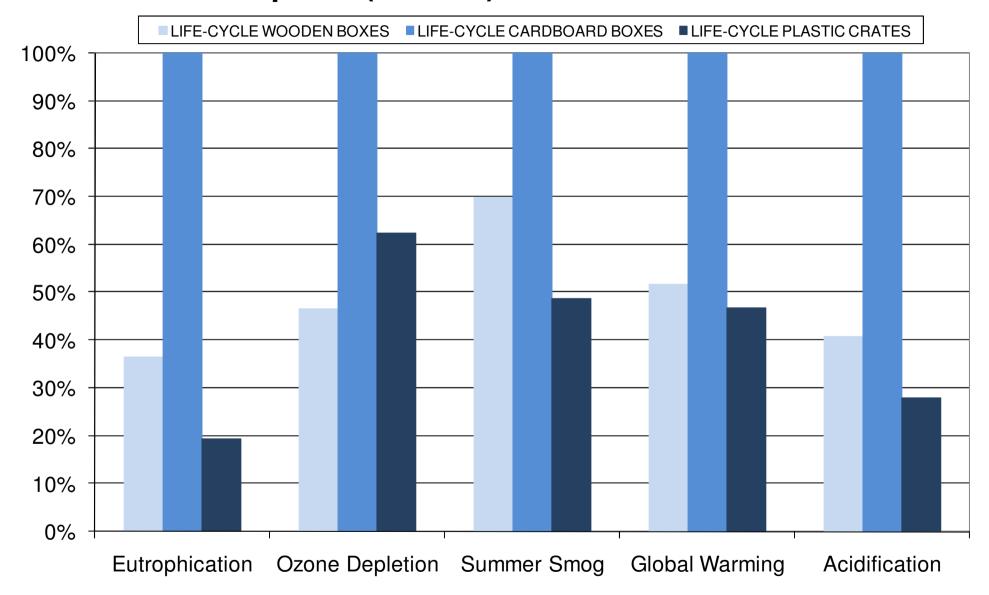
- Functional unit: distribution of 1,000 tons of fruit/vegetables
- Extended functional unit: distribution of 3,333,350 filled boxes/crates


Specifications of boxes / crates

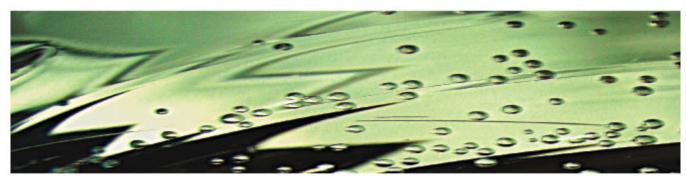
	Wooden boxes	Cardboard boxes	Plastic crates		
Production (Material)	Wood	Cardboard	Polypropylene and Polyethylene		
Transportation	One way	One way	Multi way		
Reuse	-	-	Distribution Cleaning		
End-of-Life	Energy recovery Material recycling	Energy recovery Material recycling	Energy recovery Material recycling		
Weight of box [kg]	0.9	0.823	2		
Dimensions exterior [mm]	600x400x240	600x400x240	600x400x240		
Producer countries (fruit & vegetables)	Spain, Italy, France, The Netherlands, Germany				
Consumer countries (fruit & vegetables)	France, The Netherlands, Germany, Great Britain				



Routes of crates

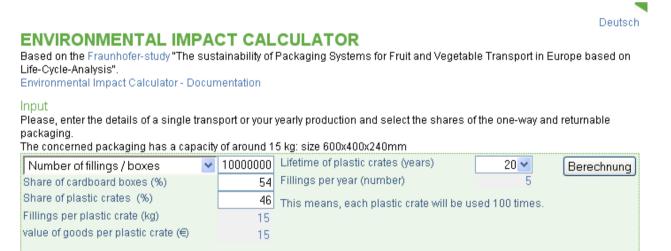

Primary energy demand (relative)

Environmental impacts (relative)



Impact Calculator - Objectives

- Provision of a scientifically basis for non-LCA actors in the packaging industry, logistical service providers and industrial customers to reach decisions on the packaging options that offer the most environmental benefits and that best consider sustainability aspects.
- Illustration of SIM-study results.



Impact Calculator - Inputs

- Selection as to whether the transportation task is to be defined by tonnage [kg], value of goods [€] or number of crates to be transported [number].
- Input of the respective tonnage [kg], value of goods [€] or number of crates to be transported [number] for which the environmental impact is to be calculated.
- ▶ Definition of the crate pool composition to be used to complete the transportation task: Input share of one-way (cardboard) or multi-way (plastic) boxes [%].
- Assumed lifetime of plastic crates [years]: in accordance with assumptions made in the study, 10 or 20 years can be selected.

Impact Calculator - Outputs

- 1. The transportation task defined by the input parameters is initially transformed into the number of transportation events for each cardboard boxes and plastic crates.
- 2. Scenarios 100% multi-way (plastic) or 100% one-way (cardboard boxes) are calculated using scaling factors as a basis of comparison.
- 3. Environmental impacts are calculated, taking into account the shares of the different transport options (one-way or multi-way) chosen by the user.
- 4. Potential savings and already achieved savings are calculated by comparing the results for the chosen transport composition (share of one-way and multi-way) each to 100% multi-way and to 100% one-way.

Definition of pool composition	
Number of transports using cardboard boxes according to defined pool composition	5.400.000
Number of transports using plastic crates according to defined pool composition	4.600.000
Total number of transports	10.000.000

Results: Environmental Impacts		100% plastic crate ca (returnable)	100% ordboard box (one-way)
Contribution to Greenhouse Effect	kg CO2-Equivalent	3.076.574	7.079.588
Contribution to Overfertilization	kg PO4-Equivalent	2.458	13.083
Contribution to the Ozone Hole	kg R11-Equivalent	1,07	1,92
Contribution to Summer Smog	kg C2H4-Equivalent	3.033	6.602
Contribution to Acid Rain	kg SO2-Equivalent	16.898	63.474

Environmental Impacts according to d	efined pool composition	absolute plastic crate ca (returnable)	absolute ardboard box (one-way)	Total
Contribution to Greenhouse Effect	kg CO2-Equivalent	1.415.224	3.822.977	5.238.201
Contribution to Overfertilization	kg PO4-Equivalent	1.131	7.065	8.196
Contribution to the Ozone Hole	kg R11-Equivalent	0,492	1,037	1,529
Contribution to Summer Smog	kg C2H4-Equivalent	1.395	3,565	4.960
Contribution to Acid Rain	kg SO2-Equivalent	7.773	34.276	42.049

Savings potential in case of change to compared to defined pool composition		relative in %	absolute
Contribution to Greenhouse Effect	kg CO2-Equivalent	41,3 %	2.161.627
Contribution to Overfertilization	kg PO4-Equivalent	70 %	5.737
Contribution to the Ozone Hole	kg R11-Equivalent	30 %	0,459
Contribution to Summer Smog	kg C2H4-Equivalent	38,9 %	1.927
Contribution to Acid Rain	kg SO2-Equivalent	59,8 %	25,151

Impact Calculator - Example

Share of one- way card- board boxes	Share of multi-way plastic crates	Improvemen t Potential GWP		Improvemen	r Potential EP	Ітргочетеп	t Potential AP
[%]	[%]	relative to 100% muti-way	absolute [kg CO ₂ - Eqivalents]	relative to 100% multi-way	absolute [kg PO ₄ ³- Equivlents]	relative to 100% multi-way	absolute [kg SO ₂ - Equivlents]
0	100	0.0%	0.000E+00	0.0%	0.000E+00	0.0%	0.000E+00
10	90	10.2%	3.760E+02	29.5%	1.000E+00	20.5%	5.000E+00
20	80	18.5%	7.520E+02	45.5%	2.000E+00	34.0%	9.000E+00
30	70	25.4%	1.128E+03	55.6%	3.000E+00	43.6%	1.400E+01
40	60	31.2%	1.504E+03	62.6%	4.000E+00	50.8%	1.800E+01
50	50	36.2%	1.880E+03	67.6%	5.000E+00	56.3%	2.300E+01
60	40	40.5%	2.256E+03	71.5%	6.000E+00	60.7%	2.700E+01
70	30	44.2%	2.632E+03	74.5%	7.000E+00	64.3%	3.200E+01
80	20	47.5%	3.008E+03	77.0%	8.000E+00	67.3%	3.700E+01
90	10	50.5%	3.384E+03	79.0%	1.000E+01	69.9%	4.100E+01
100	0	53.1%	3.760E+03	80.7%	1.100E+01	72.1%	4.600E+01

Discussion and Conclusions

- SIM study is a complex model analyzing environmental impacts of different options for fruit and vegetable transport in an European dimension.
- ► The results of this study (base scenario settings) have been illustrated and made available for the public by transforming them into an easy-to-handle web tool.
- The tool provides only a few specification possibilities for the user.
- Nevertheless, it can be employed for information and decision-making support in the fruit and vegetable packaging and transport industry, for example for the compilation of pools for transport boxes; thus contributing to the sustainability of this sector.

Symposium 2010 - Program sustainability 2.0 - from green to blue

Use this opportunity to inform yourself about the newest developments and trends in sustainability and exchange ideas with experts from all over the world:

- How to transform current business models into sustainable practice
- How to reach the next level of sustainability
- How to assert market and sector leadership positions
 Oct. 26, 2010

Workshops & Seminars, SoFi User Workshop

Oct. 27, 2010

Symposium with Presentations, Plenary discussion, Round Tables, Networking ...

Oct. 28, 2010

Workshops & Seminars, GaBi User Conference

More Information: www.pe-international.com

Save the Date. October 26 – 28, 2010

sustainability 2.0 from green to blue

Presentations from:

Amcor – Arla foods –
BASF – Carbon Disclosure
Project – Knauf Insulation –
Kraft Foods–Masdar-Tata
Consultancy Services–
Verdantix – World
Resources Institute...

University of Stuttgart

Chair of Building Physics

Contacts

Dipl.-Geoökol. Tabea Beck

University of Stuttgart
Chair of Building Physics
Department Life Cycle Engineering

Hauptstrasse 113 70771 Echterdingen Germany

Tel.: +49(0)711-489999-24 Fax: +49(0)711-489999-11

E-Mail: tabea.beck@lbp.uni-stuttgart.de

http://www.lbpgabi.uni-stuttgart.de

Dipl.-Ing. Stefan Albrecht

University of Stuttgart Chair of Building Physics Department Life Cycle Engineering

Hauptstrasse 113 70771 Echterdingen Germany

Tel.: +49(0)711-489999-26 Fax: +49(0)711-489999-11

stefan.albrecht@lbp.uni-stuttgart.de

http://www.lbpgabi.uni-stuttgart.de

