

Bari, 22nd– 24th September 2010. VII International Conference on Life Cycle Assessment in the Agri-Food Sector

Joint Research Centre (JRC)

Food or fuel: how to best use land?

Miguel Brandão

IES - Institute for Environment and Sustainability

Ispra - Italy

http://ies.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/

Bari, 22nd – 24th September 2010. VII International Conference on Life Cycle Assessment in the Agri-Food Sector

Institute for Environment and Sustainability (IES)

Joint Research Centre (JRC)

European Commission

Mission statement:

"...to provide customer-driven scientific and technical support for the conception, development, implementation and monitoring of European Union policies ... independent of special interests, whether private or national."

- Goal and scope
- Inventory Analysis
- Impact Assessment
- Interpretation
- Concluding remarks

- Competition for land between ecosystem goods and services (e.g. food, fuel, carbon sink)
- "What are the global environmental *consequences* of diverting wheat from food to fuel purposes in UK?"
 - Indirect Land Use Change (iLUC)
 - Climate Change (GWP100), including biogenic C flows and temporary storage
 - Ecosystem Services (Net Ecosystem Carbon Balance)
- Consequential approach
- Functional unit: 1 ha
- Modelled system includes affected parts within its boundaries
- System subdivision
 - foreground system (UK wheat cropland)
 - background system (marginal production, thereby avoiding allocation)

- Includes subsequent displacements from product and co-products
 - Food wheat
 - Animal feed from the co-production of DDGS
 - Vehicle fuel (gasoline)
- ... and replacements (if consumption is held constant)
 - Food wheat
 - A combination of palm oil, soymeal and feedwheat
 - ILUC!
- Dynamic, linear, marginal
- Substitution effects
- Marginal producers
 - Wheat for food and feed (Canada)

 - Argentina (soymeal)
 Indonesia (vegetable oil)

Bari, 22nd – 24th September 2010. VII International Conference on Life Cycle Assessment in the Agri-Food Sector

	Dry Matter (DM) (%)	Digestible Energy (MJ / kg DM)	Metabolizable Protein (g / kg DM)	Vegetable oil (kg/kg DM)
Soybean meal	89	15.48	363	0.233
Feed wheat	87	16.23	75	
DDGS	93	16.12	244	
Palm kernel meal	90	13.72	115	5.236

A = t soybean meal	x = energy	$\int A = 15.48x + 363y + 0.233z$
B = t feed wheat	y = protein	$\begin{cases} B = 16.23x + 75y \end{cases}$
C = t palm oil	z = vegetable oil	C = 2.29x + 19y + z

15.48A + 16.23B + 2.29C = -39x363A + 75B + 19C = -586y0.233A + C = 0

$$\begin{bmatrix} 15.48 & 16.23 & 2.29 \\ 363 & 75 & 19 \\ 0.233 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} A \\ B \\ C \end{bmatrix} = -\begin{bmatrix} 39 \\ 586 \\ 0 \end{bmatrix} \qquad \begin{array}{c} A = -1.41 \\ B = -1.09 \\ C = 0.33 \end{array}$$

Bari, 22nd – 24th September 2010. VII International Conference on Life Cycle Assessment in the Agri-Food Sector

EUROPEAN COMMISSION

Importance of Land Use in the Global Carbon Cycle

8

Decay of atmospheric CO₂

9

Bari, 22nd – 24th September 2010. VII International Conference on Life Cycle Assessment in the Agri-Food Sector

Source: equation from IPCC (2007, p.212)

Global Warming Potential: the Moura-Costa approach

11

	Global Warming Potential (CO ₂ -eq)		
	20 years	100 years	500 years
Carbon Dioxide	1	1	1
Methane	72	25	7.6
Nitrous Oxide	289	298	153
Carbon Dioxide tonne-years	1/14.6 = 0.074	1/47.8 = 0.021	1/157.3 = 0.006
Carbon tonne-years	0.074*44/12= =0.27	0.021*44/12= =0.08	0.006*44/12= =0.022

Changes in carbon stocks

12

Bari, 22nd – 24th September 2010. VII International Conference on Life Cycle Assessment in the Agri-Food Sector

Source: IPCC (2006)

$$ECS \ deficit \ \left[\Delta ECS\right] = (ECS_{ini} - ECS_{fin}) * 20/2 + \left(ECS_{ini} - ECS_{fin}\right) \times \left(t_{fin} - t_{ini}\right)$$

Allocating ILUC

Bari, 22nd – 24th September 2010. VII International Conference on Life Cycle Assessment in the Agri-Food Sector

14

YEAR	Yearly burden	Cumulative burden
1	9.75%	9.75%
2	9.25%	19.00%
3	8.75%	27.75%
4	8.25%	36.00%
5	7.75%	43.75%
6	7.25%	51.00%
7	6.75%	57.75%
8	6.25%	64.00%
9	5.75%	69.75%
10	5.25%	75.00%
11	4.75%	79.75%
12	4.25%	84.00%
13	3.75%	87.75%
14	3.25%	91.00%
15	2.75%	93.75%
16	2.25%	96.00%
17	1.75%	97.75%
18	1.25%	99.00%
19	0.75%	99.75%
20	0.25%	100.00%

Climate impacts

Bari, 22nd – 24th September 2010. VII International Conference on Life Cycle Assessment in the Agri-Food Sector

15

JRC

EUROPEAN COMMISSION

Bari, 22nd – 24th September 2010. VII International Conference on Life Cycle Assessment in the Agri-Food Sector

- Changing wheat from food to fuel purposes
 - does not result in GHG savings!
 - reduces global ECS biodiversity and ecosystem services
- Methods, methodological choices and uncertainties
 - Goal & scope and Inventory
 - Functional unit
 - System boundaries
 - Physical displacement
 - Land occupation impacts always > allocated land transformation impacts
 - Time-period
 - Yields!!!
 - Impact Assessment (Ecosystems and Climate)
 - Disruptions to carbon cycle
 - Time-period
 - All tonne-years are equal
- Better alternative to
 - CGE models?
 - attributional LCAs?

Brandão (2010) Food, Feed, Fuel, Forest or Carbon Sink: Can LCA Provide Guidance on How to Best Use Land for Climate-Change Mitigation? EcoBalance 2010, Tokyo, Japan.

Bari, 22nd – 24th September 2010. VII International Conference on Life Cycle Assessment in the Agri-Food Sector

miguel.brandao@jrc.ec.europa.eu http://lct.jrc.ec.europa.eu

